

 Overview

Overview

Installation

pip install loguru

Features

	Ready to use out of the box without boilerplate

	No Handler, no Formatter, no Filter: one function to rule them all

	Easier file logging with rotation / retention / compression

	Modern string formatting using braces style

	Exceptions catching within threads or main

	Pretty logging with colors

	Asynchronous, Thread-safe, Multiprocess-safe

	Fully descriptive exceptions

	Structured logging as needed

	Lazy evaluation of expensive functions

	Customizable levels

	Better datetime handling

	Suitable for scripts and libraries

	Entirely compatible with standard logging

	Personalizable defaults through environment variables

	Convenient parser

	Exhaustive notifier

	 10x faster than built-in logging

Take the tour

Ready to use out of the box without boilerplate

The main concept of Loguru is that there is one and only one logger [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger].

For convenience, it is pre-configured and outputs to stderr to begin with (but that’s entirely configurable).

from loguru import logger

logger.debug("That's it, beautiful and simple logging!")

The logger [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger] is just an interface which dispatches log messages to configured handlers. Simple, right?

No Handler, no Formatter, no Filter: one function to rule them all

How to add an handler? How to setup logs formatting? How to filter messages? How to set level?

One answer: the start() [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.start] function.

logger.start(sys.stderr, format="{time} {level} {message}", filter="my_module", level="INFO")

This function should be used to register sinks [https://loguru.readthedocs.io/en/stable/api/logger.html#sink] which are responsible of managing log messages [https://loguru.readthedocs.io/en/stable/api/logger.html#message] contextualized with a record dict [https://loguru.readthedocs.io/en/stable/api/logger.html#record]. A sink can take many forms: a simple function, a string path, a file-like object, a built-in Handler or a custom class.

Easier file logging with rotation / retention / compression

If you want to send logged messages to a file, you just have to use a string path as the sink. It can be automatically timed too for convenience:

logger.start("file_{time}.log")

It is also easily configurable [https://loguru.readthedocs.io/en/stable/api/logger.html#file] if you need rotating logger, if you want to remove older logs, or if you wish to compress your files at closure.

logger.start("file_1.log", rotation="500 MB") # Automatically rotate too big file
logger.start("file_2.log", rotation="12:00") # New file is created each day at noon
logger.start("file_3.log", rotation="1 week") # Once the file is too old, it's rotated

logger.start("file_X.log", retention="10 days") # Cleanup after some time

logger.start("file_Y.log", compression="zip") # Save some loved space

Modern string formatting using braces style

Loguru favors the much more elegant and powerful {} formatting over %, logging functions are actually equivalent to str.format().

logger.info("If you're using Python {}, prefer {feature} of course!", 3.6, feature="f-strings")

Exceptions catching within threads or main

Have you ever seen your program crashing unexpectedly without seeing anything in the logfile? Did you ever noticed that exceptions occuring in threads were not logged? This can be solved using the catch() [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.catch] decorator / context manager which ensures that any error is correctly propagated to the logger [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger].

@logger.catch
def my_function(x, y, z):
 # An error? It's catched anyway!
 return 1 / (x + y + z)

Pretty logging with colors

Loguru automatically adds colors to your logs if your terminal is compatible. You can define your favorite style by using markup tags [https://loguru.readthedocs.io/en/stable/api/logger.html#color] in the sink format.

logger.start(sys.stdout, colorize=True, format="<green>{time}</green> <level>{message}</level>")

Asynchronous, Thread-safe, Multiprocess-safe

All sinks added to the logger [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger] are thread-safe by default. If you want async logging or need to use the same sink through different multiprocesses, you just have to enqueue the messages.

logger.start("somefile.log", enqueue=True)

Fully descriptive exceptions

Logging exceptions that occur in your code is important to track bugs, but it’s quite useless if you don’t know why it failed. Loguru help you identify problems by allowing the entire stack trace to be displayed, including variables values.

The code:

logger.start("output.log", backtrace=True) # Set 'False' to avoid leaking sensible data in prod

def func(a, b):
 return a / b

def nested(c):
 try:
 func(5, c)
 except ZeroDivisionError:
 logger.exception("What?!")

nested(0)

Would result in:

2018-07-17 01:38:43.975 | ERROR | __main__:nested:10 - What?!
Traceback (most recent call last, catch point marked):

 File "test.py", line 12, in <module>
 nested(0)
 └ <function nested at 0x7f5c755322f0>

> File "test.py", line 8, in nested
 func(5, c)
 │ └ 0
 └ <function func at 0x7f5c79fc2e18>

 File "test.py", line 4, in func
 return a / b
 │ └ 0
 └ 5

ZeroDivisionError: division by zero

Structured logging as needed

Want your logs to be serialized for easier parsing or to pass them around? Using the serialize argument, each log message will be converted to a JSON string before being sent to the configured sink.

logger.start(custom_sink_function, serialize=True)

Using bind() [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.bind] you can contextualize your logger messages by modifying the extra record attribute.

logger.start("file.log", format="{extra[ip]} {extra[user]} {message}")
logger_ctx = logger.bind(ip="192.168.0.1", user="someone")
logger_ctx.info("Contextualize your logger easily")
logger_ctx.bind(user="someoneelse").info("Inline binding of extra attribute")

Lazy evaluation of expensive functions

Sometime you would like to log verbose information without performance penalty in production, you can use the opt() [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.opt] method to achieve this.

logger.opt(lazy=True).debug("If sink level <= DEBUG: {x}", x=lambda: expensive_function(2**64))

By the way, "opt()" serves many usages
logger.opt(exception=True).info("Exception with an "INFO" level")
logger.opt(ansi=True).info("Per message <blue>colors</blue>")
logger.opt(record=True).info("Log record attributes (eg. {record[thread].id})")
logger.opt(raw=True).info("Bypass sink formatting\n")
logger.opt(depth=1).info("Use parent stack context (useful within wrapped functions)")

Customizable levels

Loguru comes with all standard logging levels to which trace() [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.trace] and success() [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.success] are added. Do you need more? Then, just create it by using the level() [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.level] function.

new_level = logger.level("SNAKY", no=8, color="<yellow>", icon="🐍")

logger.log("SNAKY", "Here we go!")

Better datetime handling

The standard logging is bloated with arguments like datefmt or msecs, %(asctime)s and %(created)s, naive datetimes without timezone information, not intuitive formatting, etc. Loguru fixes it [https://loguru.readthedocs.io/en/stable/api/logger.html#time]:

logger.start("file.log", format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}")

Suitable for scripts and libraries

Using the logger in your scripts is easy, and you can configure() [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.configure] it at start. To use Loguru from inside a libary, remember to never call start() [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.start] but use disable() [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.disable] instead so logging functions become no-op. If an user want to see your library’s logs, he can enable() [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.enable] it again.

For scripts
my_logging_config = dict(
 handlers=[{'sink': sys.stdout, 'colorize': False, format="{time} - {message}"}],
 extra={"user": "someone"}
)
logger.configure(**my_logging_config)

For libraries
logger.disable("my_library")
logger.info("No matter started sinks, this message is not displayed")
logger.enable("my_library")
logger.info("This message however is propagated to the sinks")

Entirely compatible with standard logging

Wish to use built-in logging Handler as a Loguru sink?

handler = logging.handlers.SysLogHandler(address=('localhost', 514))
logger.start(handler)

Need to propagate Loguru messages to standard logging?

class PropagateHandler(logging.Handler):
 def emit(self, record):
 logging.getLogger(record.name).handle(record)

logger.start(PropagateHandler())

Want to intercept standard logging messages toward your Loguru sinks?

class InterceptHandler(logging.Handler):
 def emit(self, record):
 logger_opt = logger.opt(depth=6, exception=record.exc_info)
 logger_opt.log(record.levelno, record.getMessage())

logging.getLogger(None).addHandler(InterceptHandler())

Personalizable defaults through environment variables

Don’t like the default logger formatting? Would prefer another DEBUG color? No problem [https://loguru.readthedocs.io/en/stable/api/logger.html#env]:

Linux / OSX
export LOGURU_FORMAT="{time} | <lvl>{message}</lvl>"

Windows
setx LOGURU_DEBUG_COLOR="<green>"

Convenient parser

It is often useful to extract specific information from generated logs, this is why Loguru provides a parse() [https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.parse] method which helps dealing with logs and regexes.

pattern = r"(?P<time>.*) - (?P<level>[0-9]+) - (?P<message>.*)"
caster_dict = dict(time=time.strptime, level=int)

for groups in logger.parse("file.log", pattern, cast=caster_dict):
 print("Parsed message at {} with severity {}".format(groups["time"], groups["level"]))

Exhaustive notifier

Loguru can easily be combined with the great notifiers [https://pypi.org/project/notifiers/] library (must be installed separately) to receive an e-mail when your program fail unexpectedly or to send many other kind of notifications.

import notifiers

def send_mail(message):
 g = notifiers.get_notifier('gmail')
 g.notify(message=message, to="dest@gmail.com", username="you@gmail.com", password="abc123")

Send a notification
send_mail("The application is running!")

Be alerted on each error messages
logger.start(send_mail, level="ERROR")

 API Reference

API Reference

The Loguru library provides a pre-instanced logger to facilitate dealing with logging in Python.

Just from loguru import logger.

	loguru.logger

 CLICK

 loguru.logger

loguru.logger

	
class Logger

	An object to dispatch logging messages to configured handlers.

The Logger is the core objet of loguru, every logging configuration and usage pass through
a call to one of its methods. There is only one logger, so there is no need to retrieve one
before usage.

Handlers to which send log messages are added using the start() method. Note that you can
use the Logger right after import as it comes pre-configured. Messages can be logged with
different severity levels and using braces attributes like the str.format() [https://docs.python.org/3/library/stdtypes.html#str.format] method do.

Once a message is logged, a “record” is associated with it. This record is a dict wich contains
several information about the logging context: time, function, file, line, thread, level…
It also contains the __name__ of the module, this is why you don’t need named loggers.

You should not instantiate a Logger by yourself, use from loguru import logger instead.

	
start(sink, *, level='DEBUG', format='<green>{time:YYYY-MM-DD HH:mm:ss.SSS}</green> | <level>{level: <8}</level> | <cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>', filter=None, colorize=None, serialize=False, backtrace=True, enqueue=False, catch=True, **kwargs)

	Start sending log messages to a sink adequately configured.

	Parameters

	
	sink (file-like object [https://docs.python.org/3/glossary.html#term-file-object], str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], function [https://docs.python.org/3/library/functions.html#callable], logging.Handler [https://docs.python.org/3/library/logging.html#logging.Handler] or class [https://docs.python.org/3/tutorial/classes.html]) – An object in charge of receiving formatted logging messages and propagating them to an
appropriate endpoint.

	level (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The minimum severity level from which logged messages should be send to the sink.

	format (str [https://docs.python.org/3/library/stdtypes.html#str] or function [https://docs.python.org/3/library/functions.html#callable], optional) – The template used to format logged messages before being sent to the sink.

	filter (function [https://docs.python.org/3/library/functions.html#callable] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A directive used to optionally filter out logged messages before they are send to the
sink.

	colorize (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not the color markups contained in the formatted message should be converted
to ansi codes for terminal coloration, ore stripped otherwise. If None, the choice
is automatically made based on the sink being a tty or not.

	serialize (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not the logged message and its records should be first converted to a JSON
string before being sent to the sink.

	backtrace (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not the formatted exception should use stack trace to display local
variables values. This probably should be set to False in production to avoid
leaking sensitive data.

	enqueue (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not the messages to be logged should first pass through a multiprocess-safe
queue before reaching the sink. This is useful while logging to a file through multiple
processes.

	catch (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not errors occuring while sink handles logs messages should be caught or not.
If True, an exception message is displayed on sys.stderr [https://docs.python.org/3/library/sys.html#sys.stderr] but the exception is not
propagated to the caller, preventing sink from stopping working.

	**kwargs – Additional parameters that will be passed to the sink while creating it or while
logging messages (the exact behavior depends on the sink type).

If and only if the sink is a file, the following parameters apply:

	Parameters

	
	rotation (str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], datetime.time [https://docs.python.org/3/library/datetime.html#datetime.time], datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] or function [https://docs.python.org/3/library/functions.html#callable], optional) – A condition indicating whenever the current logged file should be closed and a new one
started.

	retention (str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] or function [https://docs.python.org/3/library/functions.html#callable], optional) – A directive filtering old files that should be removed during rotation or end of
program.

	compression (str [https://docs.python.org/3/library/stdtypes.html#str] or function [https://docs.python.org/3/library/functions.html#callable], optional) – A compression or archive format to which log files should be converted at closure.

	delay (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not the file should be created as soon as the sink is configured, or delayed
until first logged message. It defaults to False.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The openning mode as for built-in open() [https://docs.python.org/3/library/functions.html#open] function. It defaults to "a" (open the
file in appending mode).

	buffering (int [https://docs.python.org/3/library/functions.html#int], optional) – The buffering policy as for built-in open() [https://docs.python.org/3/library/functions.html#open] function. It defaults to 1 (line
buffered file).

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The file encoding as for built-in open() [https://docs.python.org/3/library/functions.html#open] function. If None, it defaults to
locale.getpreferredencoding().

	**kwargs – Others parameters are passed to the built-in open() [https://docs.python.org/3/library/functions.html#open] function.

	Returns

	int [https://docs.python.org/3/library/functions.html#int] – An identifier associated with the starteds sink and which should be used to
stop() it.

Notes

Extended summary follows.

The sink parameter

The sink handles incomming log messages and proceed to their writing somewhere and
somehow. A sink can take many forms:

	A file-like object [https://docs.python.org/3/glossary.html#term-file-object] like sys.stderr or open("somefile.log", "w"). Anything with
a .write() method is considered as a file-like object. If it has a .flush()
method, it will be automatically called after each logged message. If it has a .stop()
method, it will be automatically called at sink termination.

	A file path as str [https://docs.python.org/3/library/stdtypes.html#str] or pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]. It can be parametrized with some additional parameters,
see bellow.

	A simple function [https://docs.python.org/3/library/functions.html#callable] like lambda msg: print(msg). This allows for logging
procedure entirely defined by user preferences and needs.

	A built-in logging.Handler [https://docs.python.org/3/library/logging.html#logging.Handler] like logging.StreamHandler. In such a case, the Loguru records
are automatically converted to the structure expected by the logging [https://docs.python.org/3/library/logging.html#module-logging] module.

	A class [https://docs.python.org/3/tutorial/classes.html] object that will be used to instantiate the sink using **kwargs attributes
passed. Hence the class should instantiate objects which are therefore valid sinks.

The logged message

The logged message passed to all started sinks is nothing more than a string of the
formatted log, to which a special attribute is associated: the .record which is a dict
containing all contextual information possibly needed (see bellow).

Logged messages are formatted according to the format of the started sink. This format
is usually a string containing braces fields to display attributes from the record dict.

If fine-grained control is needed, the format can also be a function which takes the
record as parameter and return the format template string. However, note that in such a
case, you should take care of appending the line ending and exception field to the returned
format, while "\n{exception}" is automatically appended for convenience if format is
a string.

The filter attribute can be used to control which messages are effectively passed to the
sink and which one are ignored. A function can be used, accepting the record as an
argument, and returning True if the message should be logged, False otherwise. If
a string is used, only the records with the same name and its children will be allowed.

The record dict

The record is just a Python dict, accessible from sinks by message.record, and usable
for formatting as "{key}". Some record’s values are objects with two or more attibutes,
those can be formatted with "{key.attr}" ("{key}" would display one by default).
Formatting directives like "{key: >3}" also works and is specially useful for time (see
bellow).

	Key

	Description

	Attributes

	elapsed

	The time elapsed since the
start of the program

	See datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]

	exception

	The formatted exception if any,
None otherwise

	type, value,
traceback

	extra

	The dict of attributes
bound by the user

	None

	file

	The file where the logging call
was made

	name (default),
path

	function

	The function from which the
logging call was made

	None

	level

	The severity used to log the
the message

	name (default),
no, icon

	line

	The line number in the source
code

	None

	message

	The logged message (not yet
formatted)

	None

	module

	The module where the logging
call was made

	None

	name

	The __name__ where the
logging call was made

	None

	process

	The process in which the
logging call was made

	name, id (default)

	thread

	The thread in which the
logging call was made

	name, id (default)

	time

	The local time when the logging
call was made

	See datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

The time formatting

The time field can be formatted using more human-friendly tokens. Those constitute a subset
of the one used by the Pendulum [https://pendulum.eustace.io/docs/#tokens] library by @sdispater [https://github.com/sdispater]. To escape a token, just add
square brackets around it.

	
	Token

	Output

	Year

	YYYY

	2000, 2001, 2002 … 2012, 2013

	YY

	00, 01, 02 … 12, 13

	Quarter

	Q

	1 2 3 4

	Month

	MMMM

	January, February, March …

	MMM

	Jan, Feb, Mar …

	MM

	01, 02, 03 … 11, 12

	M

	1, 2, 3 … 11, 12

	Day of Year

	DDDD

	001, 002, 003 … 364, 365

	DDD

	1, 2, 3 … 364, 365

	Day of Month

	DD

	01, 02, 03 … 30, 31

	D

	1, 2, 3 … 30, 31

	Day of Week

	dddd

	Monday, Tuesday, Wednesday …

	ddd

	Mon, Tue, Wed …

	d

	0, 1, 2 … 6

	Days of ISO Week

	E

	1, 2, 3 … 7

	Hour

	HH

	00, 01, 02 … 23, 24

	H

	0, 1, 2 … 23, 24

	hh

	01, 02, 03 … 11, 12

	h

	1, 2, 3 … 11, 12

	Minute

	mm

	00, 01, 02 … 58, 59

	m

	0, 1, 2 … 58, 59

	Second

	ss

	00, 01, 02 … 58, 59

	s

	0, 1, 2 … 58, 59

	Fractional Second

	S

	0 1 … 8 9

	SS

	00, 01, 02 … 98, 99

	SSS

	000 001 … 998 999

	SSSS…

	000[0..] 001[0..] … 998[0..] 999[0..]

	SSSSSS

	000000 000001 … 999998 999999

	AM / PM

	A

	AM, PM

	Timezone

	Z

	-07:00, -06:00 … +06:00, +07:00

	ZZ

	-0700, -0600 … +0600, +0700

	zz

	EST CST … MST PST

	Seconds timestamp

	X

	1381685817, 1234567890.123

	Microseconds timestamp

	x

	1234567890123

The file sinks

If the sink is a str [https://docs.python.org/3/library/stdtypes.html#str] or a pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], the corresponding file will be opened for writing logs.
The path can also contains a special "{time}" field that will be formatted with the
current date at file creation.

The rotation check is made before logging each messages. If there is already an existing
file with the same name that the file to be created, then the existing file is renamed by
appending the date to its basename to prevent file overwritting. This parameter accepts:

	an int [https://docs.python.org/3/library/functions.html#int] which corresponds to the maximum file size in bytes before that the current
logged file is closed and a new one started over.

	a datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] which indicates the frequency of each new rotation.

	a datetime.time [https://docs.python.org/3/library/datetime.html#datetime.time] which specifies the hour when the daily rotation should occur.

	a str [https://docs.python.org/3/library/stdtypes.html#str] for human-friendly parametrization of one of the previously enumerated types.
Examples: "100 MB", "0.5 GB", "1 month 2 weeks", "4 days", "10h",
"monthly", "18:00", "sunday", "w0", "monday at 12:00", …

	a function [https://docs.python.org/3/library/functions.html#callable] which will be called before logging. It should accept two
arguments: the logged message and the file object, and it should return True if
the rotation should happen now, False otherwise.

The retention occurs at rotation or at sink stop if rotation is None. Files are
selected according to their basename, if it is the same that the sink file, with possible
time field being replaced with .*. This parameter accepts:

	an int [https://docs.python.org/3/library/functions.html#int] which indicates the number of log files to keep, while older files are removed.

	a datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] which specifies the maximum age of files to keep.

	a str [https://docs.python.org/3/library/stdtypes.html#str] for human-friendly parametrization of the maximum age of files to keep.
Examples: "1 week, 3 days", "2 months", …

	a function [https://docs.python.org/3/library/functions.html#callable] which will be called before the retention process. It should accept the list
of log files as argument and process to whatever it wants (moving files, removing them,
etc.).

The compression happens at rotation or at sink stop if rotation is None. This
parameter acccepts:

	a str [https://docs.python.org/3/library/stdtypes.html#str] which corresponds to the compressed or archived file extension. This can be one
of: "gz", "bz2", "xz", "lzma", "tar", "tar.gz", "tar.bz2",
"tar.xz", "zip".

	a function [https://docs.python.org/3/library/functions.html#callable] which will be called before file termination. It should accept the path
of the log file as argument and process to whatever it wants (custom compression,
network sending, removing it, etc.).

The color markups

To add colors to your logs, you just have to enclose your format string with the appropriate
tags. This is based on the great ansimarkup [https://github.com/gvalkov/python-ansimarkup] library from @gvalkov [https://github.com/gvalkov]. Those tags are
removed if the sink don’t support ansi codes.

The special tag <level> (abbreviated with <lvl>) is transformed according to
the configured color of the logged message level.

Here are the available tags (note that compatibility may vary depending on terminal):

	Color (abbr)

	Styles (abbr)

	Black (k)

	Bold (b)

	Blue (e)

	Dim (d)

	Cyan (c)

	Normal (n)

	Green (g)

	Italic (i)

	Magenta (m)

	Underline (u)

	Red (r)

	Strike (s)

	White (w)

	Reverse (r)

	Yellow (y)

	Blink (l)

	
	Hide (h)

Usage:

	Description

	Examples

	Foreground

	Background

	Basic colors

	<red>, <r>

	<GREEN>, <G>

	Light colors

	<light-blue>, <le>

	<LIGHT-CYAN>, <LC>

	Xterm colors

	<fg 86>, <fg 255>

	<bg 42>, <bg 9>

	Hex colors

	<fg #00005f>, <fg #EE1>

	<bg #AF5FD7>, <bg #fff>

	RGB colors

	<fg 0,95,0>

	<bg 72,119,65>

	Stylizing

	<bold>, , <underline>, <u>

	Shorthand
(FG, BG)

	<red, yellow>, <r, y>

	Shorthand
(Style, FG, BG)

	<bold, cyan, white>, <b,,w>, <b,c,>

The environment variables

The default values of sink parameters can be entirely customized. This is particularly
useful if you don’t like the log format of the pre-configured sink.

Each of the start() default parameter can be modified by setting the LOGURU_[PARAM]
environment variable. For example on Linux: export LOGURU_FORMAT="{time} - {message}"
or export LOGURU_ENHANCE=NO.

The default levels attributes can also be modified by setting the LOGURU_[LEVEL]_[ATTR]
environment variable. For example, on Windows: setx LOGURU_DEBUG_COLOR="<blue>"
or setx LOGURU_TRACE_ICON="🚀".

If you want to disable the pre-configured sink, you can set the LOGURU_AUTOINIT
variable to False.

Examples

>>> logger.start(sys.stdout, format="{time} - {level} - {message}", filter="sub.module")

>>> logger.start("file_{time}.log", level="TRACE", rotation="100 MB")

>>> def my_sink(message):
... record = message.record
... update_db(message, time=record.time, level=record.level)
...
>>> logger.start(my_sink)

>>> from logging import StreamHandler
>>> logger.start(StreamHandler(sys.stderr), format="{message}")

>>> class RandomStream:
... def __init__(self, seed, threshold):
... self.threshold = threshold
... random.seed(seed)
... def write(self, message):
... if random.random() > self.threshold:
... print(message)
...
>>> stream_object = RandomStream(seed=12345, threhold=0.25)
>>> logger.start(stream_object, level="INFO")
>>> logger.start(RandomStream, level="DEBUG", seed=34567, threshold=0.5)

	
stop(handler_id=None)

	Stop logging to a previously started sink.

	Parameters

	handler_id (int [https://docs.python.org/3/library/functions.html#int] or None) – The id of the sink to stop, as it was returned by the start() method. If None,
all sinks are stopped. The pre-configured sink is guaranteed to have the index 0.

Examples

>>> i = logger.start(sys.stderr, format="{message}")
>>> logger.info("Logging")
Logging
>>> logger.stop(i)
>>> logger.info("No longer logging")

	
catch(exception=<class 'Exception'>, *, level='ERROR', reraise=False, message="An error has been caught in function '{record[function]}', process '{record[process].name}' ({record[process].id}), thread '{record[thread].name}' ({record[thread].id}):")

	Return a decorator to automatically log possibly caught error in wrapped function.

This is useful to ensure unexpected exceptions are logged, the entire program can be
wrapped by this method. This is also very useful to decorate threading.Thread.run() [https://docs.python.org/3/library/threading.html#threading.Thread.run] methods while
using threads to propagate errors to the main logger thread.

Note that the visibility of variables values (which uses the cool better_exceptions [https://github.com/Qix-/better-exceptions]
library from @Qix- [https://github.com/Qix-]) depends on the backtrace option of each configured sinks.

The returned object can also be used as a context manager.

	Parameters

	
	exception (Exception [https://docs.python.org/3/library/exceptions.html#Exception], optional) – The type of exception to intercept. If several types should be caught, a tuple of
exceptions can be used too.

	level (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int], optional) – The level name or severity with which the message should be logged.

	reraise (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not the exception should be raised again and hence propagated to the caller.

	message (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The message that will be automatically logged if an exception occurs. Note that it will
be formatted with the record attribute.

	Returns

	decorator / context manager – An object that can be used to decorate a function or as a context manager to log
exceptions possibly caught.

Examples

>>> @logger.catch
... def f(x):
... 100 / x
...
>>> def g():
... f(10)
... f(0)
...
>>> g()
ERROR - An error has been caught in function 'g', process 'Main' (367), thread 'ch1' (1398):
Traceback (most recent call last, catch point marked):
 File "program.py", line 12, in <module>
 g()
 └ <function g at 0x7f225fe2bc80>
> File "program.py", line 10, in g
 f(0)
 └ <function f at 0x7f225fe2b9d8>
 File "program.py", line 6, in f
 100 / x
 └ 0
ZeroDivisionError: division by zero

>>> with logger.catch(message="Because we never know..."):
... main() # No exception, no logs
...

	
opt(*, exception=None, record=False, lazy=False, ansi=False, raw=False, depth=0)

	Parametrize a logging call to slightly change generated log message.

	Parameters

	
	exception (bool [https://docs.python.org/3/library/functions.html#bool], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or Exception [https://docs.python.org/3/library/exceptions.html#Exception], optional) – It if does not evaluate as False, the passed exception is formatted and added to the
log message. It could be an Exception [https://docs.python.org/3/library/exceptions.html#Exception] object or a (type, value, traceback) tuple,
otherwise the exception information is retrieved from sys.exc_info() [https://docs.python.org/3/library/sys.html#sys.exc_info].

	record (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the record dict contextualizing the logging call can be used to format the
message by using {record[key]} in the log message.

	lazy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the logging call attribute to format the message should be functions which
will be called only if the level is high enough. This can be used to avoid expensive
functions if not necessary.

	ansi (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, logged message will be colorized according to the markups it possibly
contains.

	raw (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the formatting of each sink will be bypassed and the message will be send
as is.

	depth (int [https://docs.python.org/3/library/functions.html#int], optional) – Specify which stacktrace should be used to contextualize the logged message. This is
useful while using the logger from inside a wrapped function to retrieve worthwhile
information.

	Returns

	Logger – A logger wrapping the core logger, but transforming logged message adequately before
sending.

Examples

>>> try:
... 1 / 0
... except ZeroDivisionError:
... logger.opt(exception=True).debug("Exception logged with debug level:")
...
[18:10:02] DEBUG in '<module>' - Exception logged with debug level:
Traceback (most recent call last, catch point marked):
> File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

>>> logger.opt(record=True).info("Current line is: {record[line]}")
[18:10:33] INFO in '<module>' - Current line is: 1

>>> logger.opt(lazy=True).debug("If sink <= DEBUG: {x}", x=lambda: math.factorial(2**5))
[18:11:19] DEBUG in '<module>' - If sink <= DEBUG: 263130836933693530167218012160000000

>>> logger.opt(ansi=True).warning("We got a <red>BIG</red> problem")
[18:11:30] WARNING in '<module>' - We got a BIG problem

>>> logger.opt(raw=True).debug("No formatting\n")
No formatting

>>> def wrapped():
... logger.opt(depth=1).info("Get parent context")
...
>>> def func():
... wrapped()
...
>>> func()
[18:11:54] DEBUG in 'func' - Get parent context

	
bind(**kwargs)

	Bind attributes to the extra dict of each logged message record.

This is used to add custom context to each logging call.

	Parameters

	**kwargs – Mapping between keys and values that will be added to the extra dict.

	Returns

	Logger – A logger wrapping the core logger, but which sends record with the customized extra
dict.

Examples

>>> logger.start(sys.stderr, format="{extra[ip]} - {message}")
1
>>> class Server:
... def __init__(self, ip):
... self.ip = ip
... self.logger = logger.bind(ip=ip)
... def call(self, message):
... self.logger.info(message)
...
>>> instance_1 = Server("192.168.0.200")
>>> instance_2 = Server("127.0.0.1")
>>> instance_1.call("First instance")
192.168.0.200 - First instance
>>> instance_2.call("Second instance")
127.0.0.1 - Second instance

	
level(name, no=None, color=None, icon=None)

	Add, update or retrieve a logging level.

Logging levels are defined by their name to which a severity no, an ansi color
and an icon are associated and possibly modified at run-time. To log() to a custom
level, you should necessarily use its name, the severity number is not linked back to levels
name (this implies that several levels can share the same severity).

To add a new level, all parameters should be passed so it can be properly configured.

To update an existing level, pass its name with the parameters to be changed.

To retrieve level information, the name solely suffices.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the logging level.

	no (int [https://docs.python.org/3/library/functions.html#int]) – The severity of the level to be added or updated.

	color (str [https://docs.python.org/3/library/stdtypes.html#str]) – The color markup of the level to be added or updated.

	icon (str [https://docs.python.org/3/library/stdtypes.html#str]) – The icon of the level to be added or updated.

	Returns

	Level – A namedtuple containing information about the level.

Examples

>>> level = logger.level("ERROR")
Level(no=40, color='<red><bold>', icon='❌')
>>> logger.start(sys.stderr, format="{level.no} {icon} {message}")
>>> logger.level("CUSTOM", no=15, color="<blue>", icon="@")
>>> logger.log("CUSTOM", "Logging...")
15 @ Logging...
>>> logger.level("WARNING", icon=r"/!\")
>>> logger.warning("Updated!")
30 /!\ Updated!

	
disable(name)

	Disable logging of messages comming from name module and its children.

Developers of library using Loguru should absolutely disable it to avoid disrupting
users with unrelated logs messages.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the parent module to disable.

Examples

>>> logger.info("Allowed message by default")
[22:21:55] Allowed message by default
>>> logger.disable("my_library")
>>> logger.info("While publishing a library, don't forget to disable logging")

	
enable(name)

	Enable logging of messages comming from name module and its children.

Logging is generally disabled by imported library using Loguru, hence this function
allows users to receive these messages anyway.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the parent module to re-allow.

Examples

>>> logger.disable("__main__")
>>> logger.info("Disabled, so nothing is logged.")
>>> logger.enable("__main__")
>>> logger.info("Re-enabled, messages are logged.")
[22:46:12] Re-enabled, messages are logged.

	
configure(*, handlers=None, levels=None, extra=None, activation=None)

	Configure the core logger.

	Parameters

	
	handlers (list [https://docs.python.org/3/library/stdtypes.html#list] of dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A list of each handler to be started. The list should contains dicts of params passed to
the start() function as keyword arguments. If not None, all previously started
handlers are first stopped.

	levels (list [https://docs.python.org/3/library/stdtypes.html#list] of dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A list of each level to be added or updated. The list should contains dicts of params
passed to the level() function as keyword arguments. This will never remove previously
created levels.

	extra (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict containing additional parameters bound to the core logger, useful to share
common properties if you call bind() in several of your files modules. If not None,
this will remove previously configured extra dict.

	activation (list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – A list of (name, state) tuples which denotes which loggers should be enabled (if
state is True) or disabled (if state is False). The calls to enable()
and disable() are made accordingly to the list order. This will not modify previously
activated loggers, so if you need a fresh start preprend your list with ("", False)
or ("", True).

	Returns

	list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int] – A list containing the identifiers of possibly started sinks.

Examples

>>> logger.configure(
... handlers=[dict(sink=sys.stderr, format="[{time}] {message}"),
... dict(sink="file.log", enqueue=True, serialize=True)],
... levels=[dict(name="NEW", no=13, icon="¤", color="")],
... extra={"common_to_all": "default"},
... activation=[("my_module.secret": False, "another_library.module": True)]
...)
[1, 2]

	
static parse(file, pattern, *, cast={}, chunk=65536)

	Parse raw logs and extract each entry as a dict [https://docs.python.org/3/library/stdtypes.html#dict].

The logging format has to be specified as the regex pattern, it will then be
used to parse the file and retrieve each entries based on the named groups present
in the regex.

	Parameters

	
	file (str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] or file-like object [https://docs.python.org/3/glossary.html#term-file-object]) – The path of the log file to be parsed, or alternatively an already opened file object.

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str] or re.Pattern [https://docs.python.org/3/library/re.html#re-objects]) – The regex to use for logs parsing, it should contain named groups which will be included
in the returned dict.

	cast (function [https://docs.python.org/3/library/functions.html#callable] or dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A function that should convert in-place the regex groups parsed (a dict of string
values) to more appropiate types. If a dict is passed, its should be a mapping between
keys of parsed log dict and the function that should be used to convert the associated
value.

	chunk (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of bytes read while iterating through the logs, this avoid having to load the
whole file in memory.

	Yields

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – The dict mapping regex named groups to matched values, as returned by re.Match.groupdict() [https://docs.python.org/3/library/re.html#re.Match.groupdict]
and optionally converted according to cast argument.

Examples

>>> reg = r"(?P<lvl>[0-9]+): (?P<msg>.*)" # If log format is "{level.no} - {message}"
>>> for e in logger.parse("file.log", reg): # A file line could be "10 - A debug message"
... print(e) # => {'lvl': '10', 'msg': 'A debug message'}
...

>>> caster = dict(lvl=int) # Parse 'lvl' key as an integer
>>> for e in logger.parse("file.log", reg, cast=caster):
... print(e) # => {'lvl': 10, 'msg': 'A debug message'}

>>> def cast(groups):
... if "date" in groups:
... groups["date"] = datetime.strptime(groups["date"], "%Y-%m-%d %H:%M:%S")
...
>>> with open("file.log") as file:
... for log in logger.parse(file, reg, cast=cast):
... print(log["date"], log["something_else"])

	
trace(_message, *args, **kwargs)

	Log _message.format(*args, **kwargs) with severity 'TRACE'.

	
debug(_message, *args, **kwargs)

	Log _message.format(*args, **kwargs) with severity 'DEBUG'.

	
info(_message, *args, **kwargs)

	Log _message.format(*args, **kwargs) with severity 'INFO'.

	
success(_message, *args, **kwargs)

	Log _message.format(*args, **kwargs) with severity 'SUCCESS'.

	
warning(_message, *args, **kwargs)

	Log _message.format(*args, **kwargs) with severity 'WARNING'.

	
error(_message, *args, **kwargs)

	Log _message.format(*args, **kwargs) with severity 'ERROR'.

	
critical(_message, *args, **kwargs)

	Log _message.format(*args, **kwargs) with severity 'CRITICAL'.

	
log(_level, _message, *args, **kwargs)

	Log _message.format(*args, **kwargs) with severity _level.

	
exception(_message, *args, **kwargs)

	Convenience method for logging an 'ERROR' with exception information.

 CLICK

 Project Information

Project Information

	Contributing
	Asking questions

	Reporting a bug

	Implementing changes

	License

	Changelog
	0.2.0 (2018-12-08)

	0.1.0 (2018-12-07)

	0.0.1 (2017-09-04)

 CLICK

 Contributing

Contributing

Thank you for considering improving Loguru, any contribution is much welcome!

Asking questions

If you have any question about Loguru, if you are seeking for help, or if you would like to suggest a new feature, you are encouraged to open a new issue [https://github.com/Delgan/loguru/issues/new] so we can discuss it. Bringing new ideas and pointing out elements needing clarification allows to make this library always better!

Reporting a bug

If you encountered an unexpected behavior using Loguru, please open a new issue [https://github.com/Delgan/loguru/issues/new] so we can fix it as soon as possible! Be as specific as possible in the description of your problem so we can fix it as quickly as possible.

An ideal bug report includes:

	The Python version you are using

	The Loguru version you are using (you can find it with print(loguru.__version__))

	Your operating system name and version

	Your development environment and local setup (IDE, Terminal, project context, anything that could be useful)

	Some minimal reproducable example [https://stackoverflow.com/help/mcve]

Implementing changes

If you are willing to enhance Loguru by implementing non-trivial changes, please open a new issue [https://github.com/Delgan/loguru/issues/new] first to keep a reference about why such modifications are made (and potentialy avoid unneeded work). Then, the workflow would look as follow:

	Fork the Loguru [https://github.com/Delgan/loguru] project from Github

	Clone the repository locally:

$ git clone git@github.com:your_name_here/loguru.git
$ cd loguru

	Activate your virtual environment:

$ python -m virtualenv env
$ source env/bin/activate

	Create a new branch from master:

$ git checkout master
$ git branch fix_bug
$ git checkout fix_bug

	Install Loguru in development mode:

$ pip install -e .[dev]

	Implement the modifications wished. During the process of development, honor PEP 8 [https://www.python.org/dev/peps/pep-0008/] as much as possible.

	Add unit tests (don’t hesitate to be exhaustive!) and ensure none are failing using:

$ pytest tests

	Remember to update documentation if required

	Update the changelog.rst file with what you improved

	add and commit your changes, rebase your branch on master, push your local project:

$ git add .
$ git commit -m 'Add succinct explanation of what changed'
$ git rebase master
$ git push origin fix_bug

	Finally open a pull request [https://github.com/Delgan/loguru/compare] before getting it merged!

 CLICK

 License

License

MIT License

Copyright (c) 2017

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 CLICK

 Changelog

Changelog

0.2.0 (2018-12-08)

	Remove the parser and refactor it into the logger.parse() method

	Remove the notifier and its dependencies, just pip install notifiers if user needs it

0.1.0 (2018-12-07)

	Add logger

	Add notifier

	Add parser

0.0.1 (2017-09-04)

Initial release

 CLICK

 Python Module Index

 Python Module Index

 l

 		 	

 		
 l	

 	
 	
 loguru	

 CLICK

 Index

Index

 B
 | C
 | D
 | E
 | I
 | L
 | O
 | P
 | S
 | T
 | W

B

 	
 	bind() (Logger method)

C

 	
 	catch() (Logger method)

 	
 	configure() (Logger method)

 	critical() (Logger method)

D

 	
 	debug() (Logger method)

 	
 	disable() (Logger method)

E

 	
 	enable() (Logger method)

 	
 	error() (Logger method)

 	exception() (Logger method)

I

 	
 	info() (Logger method)

L

 	
 	level() (Logger method)

 	log() (Logger method)

 	
 	Logger (class in loguru._logger)

 	loguru (module)

O

 	
 	opt() (Logger method)

P

 	
 	parse() (Logger static method)

S

 	
 	start() (Logger method)

 	
 	stop() (Logger method)

 	success() (Logger method)

T

 	
 	trace() (Logger method)

W

 	
 	warning() (Logger method)

 CLICK

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Table of contents

 		
 Overview

 		
 Installation

 		
 Features

 		
 Take the tour

 		
 Ready to use out of the box without boilerplate

 		
 No Handler, no Formatter, no Filter: one function to rule them all

 		
 Easier file logging with rotation / retention / compression

 		
 Modern string formatting using braces style

 		
 Exceptions catching within threads or main

 		
 Pretty logging with colors

 		
 Asynchronous, Thread-safe, Multiprocess-safe

 		
 Fully descriptive exceptions

 		
 Structured logging as needed

 		
 Lazy evaluation of expensive functions

 		
 Customizable levels

 		
 Better datetime handling

 		
 Suitable for scripts and libraries

 		
 Entirely compatible with standard logging

 		
 Personalizable defaults through environment variables

 		
 Convenient parser

 		
 Exhaustive notifier

 		
 10x faster than built-in logging

 		
 API Reference

 		
 loguru.logger

 		
 Project Information

 		
 Contributing

 		
 Asking questions

 		
 Reporting a bug

 		
 Implementing changes

