loguru Documentation

Delgan

Jun 12, 2020

CONTENTS

1 Overview 3
1.1 Installation L e e e e e e e e e e 3
1.2 Features. e e e e e e e e e e e e e e e e 3
1.3 Takethetour o i e e e e e e e e e e e e e e 4
2 API Reference 11
2.1 1oguruU.logger . . v v v i i i e 11
22 Typehints L e e e e 28
3 Help & Guides 31
3.1 Switching from standard 1ogging to loguru o oo e e e e 31
3.2 Code snippets and recipes for LogurU . . . v v v v v v v b e e e e e e e e e e e e e e 35
4 Project Information 51
4.1 Contributing e e e e 51
42 LICENSE . v v v v v e 52
43 Changelog o e e e e e e e e e e 53
Python Module Index 59
Index 61

loguru Documentation

Loguru is a library which aims to bring enjoyable logging in Python.

Did you ever feel lazy about configuring a logger and used print () instead?... Idid, yet logging is fundamental to
every application and eases the process of debugging. Using Loguru you have no excuse not to use logging from the
start, this is as simple as from loguru import logger.

Also, this library is intended to make Python logging less painful by adding a bunch of useful functionalities that solve
caveats of the standard loggers. Using logs in your application should be an automatism, Loguru tries to make it both
pleasant and powerful.

CONTENTS 1

loguru Documentation

2 CONTENTS

CHAPTER
ONE

1.1 Installation

OVERVIEW

pip install loguru

1.2 Features

* Ready to use out of the box without boilerplate

* No Handler, no Formatter, no Filter: one function to rule them all
e Easier file logging with rotation / retention / compression
* Modern string formatting using braces style

* Exceptions catching within threads or main

* Pretty logging with colors

* Asynchronous, Thread-safe, Multiprocess-safe

* Fully descriptive exceptions

* Structured logging as needed

* Lazy evaluation of expensive functions

* Customizable levels

* Better datetime handling

e Suitable for scripts and libraries

 Entirely compatible with standard logging

* Personalizable defaults through environment variables

e Convenient parser

* Exhaustive notifier

* [0x faster than built-in logging

loguru Documentation

1.3 Take the tour

1.3.1 Ready to use out of the box without boilerplate

The main concept of Loguru is that there is one and only one 1ogger.

For convenience, it is pre-configured and outputs to st derr to begin with (but that’s entirely configurable).

from loguru import logger

logger.debug ("That's it, beautiful and simple logging!")

The 1ogger is just an interface which dispatches log messages to configured handlers. Simple, right?

1.3.2 No Handler, no Formatter, no Filter: one function to rule them all

How to add a handler? How to set up logs formatting? How to filter messages? How to set level?

One answer: the add () function.

logger.add(sys.stderr, format=" ", filter="my_module", level=
—"INFO™)

This function should be used to register sinks which are responsible for managing log messages contextualized with a
record dict. A sink can take many forms: a simple function, a string path, a file-like object, a coroutine function or a
built-in Handler.

Note that you may also remove () a previously added handler by using the identifier returned while adding it. This
is particularly useful if you want to supersede the default st derr handler: just call logger.remove () to make a
fresh start.

1.3.3 Easier file logging with rotation / retention / compression

If you want to send logged messages to a file, you just have to use a string path as the sink. It can be automatically
timed too for convenience:

logger.add("file_ .log")

It is also easily configurable if you need rotating logger, if you want to remove older logs, or if you wish to compress
your files at closure.

logger.add("file_1.log", rotation="500 MB") # Automatically rotate too big file
logger.add("file_2.log", rotation="12:00") # New file is created each day at noon
logger.add("file 3.log", rotation="1 week") # Once the file is too old, it's,
—rotated

logger.add("file X.log", retention="10 days") # Cleanup after some time
logger.add("file_Y.log", compression="zip") # Save some loved space

4 Chapter 1. Overview

https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.add
https://loguru.readthedocs.io/en/stable/api/logger.html#sink
https://loguru.readthedocs.io/en/stable/api/logger.html#message
https://loguru.readthedocs.io/en/stable/api/logger.html#record
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.remove
https://loguru.readthedocs.io/en/stable/api/logger.html#file

loguru Documentation

1.3.4 Modern string formatting using braces style

Loguru favors the much more elegant and powerful { } formatting over %, logging functions are actually equivalent to
str.format ().

logger.info ("If you're using Python , prefer of course!", 3.6, feature="f-
—strings")

1.3.5 Exceptions catching within threads or main

Have you ever seen your program crashing unexpectedly without seeing anything in the log file? Did you ever noticed
that exceptions occurring in threads were not logged? This can be solved using the catch () decorator / context
manager which ensures that any error is correctly propagated to the 1ogger.

@logger.catch

def my_function(x, vy, z):
An error? It's caught anyway!
return 1 / (x + y + z)

1.3.6 Pretty logging with colors

Loguru automatically adds colors to your logs if your terminal is compatible. You can define your favorite style by
using markup tags in the sink format.

logger.add(sys.stdout, colorize=True, format="<green> </green> <level> </
—level>")

1.3.7 Asynchronous, Thread-safe, Multiprocess-safe

All sinks added to the 1ogger are thread-safe by default. They are not multiprocess-safe, but you can enqueue the
messages to ensure logs integrity. This same argument can also be used if you want async logging.

logger.add("somefile.log", enqueue=True)

Coroutine functions used as sinks are also supported and should be awaited with complete ().

1.3.8 Fully descriptive exceptions

Logging exceptions that occur in your code is important to track bugs, but it’s quite useless if you don’t know why
it failed. Loguru helps you identify problems by allowing the entire stack trace to be displayed, including values of
variables (thanks better_exceptions for this!).

The code:

logger.add ("output.log", backtrace=True, diagnose=True) # Set 'False' to not leak_,
—sensitive data in prod

def func(a, b):
return a / b

def nested(c):

(continues on next page)

1.3. Take the tour 5

https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.catch
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger
https://loguru.readthedocs.io/en/stable/api/logger.html#color
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.complete
https://github.com/Qix-/better-exceptions

loguru Documentation

(continued from previous page)

try:
func (5, c)

except ZeroDivisionError:
logger.exception ("What?!")

nested (0)

‘Would result in:

2018-07-17 01:38:43.975 | ERROR | __main__ :nested:10 - What?!
Traceback (most recent call last):

File "test.py", line 12, in <module>
nested (0)
L <function nested at 0x7£5c755322£0>

> File "test.py", line 8, in nested
func (5, c¢)

Lo
{ <function func at 0x7f5c79fc2el18>

File "test.py", line 4, in func
return a / b

[, °°
5

ZeroDivisionError: division by zero

1.3.9 Structured logging as needed

Want your logs to be serialized for easier parsing or to pass them around? Using the serialize argument, each log
message will be converted to a JSON string before being sent to the configured sink.

logger.add (custom_sink_function, serialize=True)

Using bind () you can contextualize your logger messages by modifying the extra record attribute.

logger.add("file.log", format=" ")
context_logger = logger.bind(ip="192.168.0.1", user="someone")

context_logger.info ("Contextualize your logger easily")
context_logger.bind(user="someone_else") .info("Inline binding of extra attribute")
context_logger.info ("Use kwargs to add context during formatting: ", user=
—"anybody")

It is possible to modify a context-local state temporarily with contextualize ():

with logger.contextualize (task=task_id):
do_something ()
logger.info ("End of task")

You can also have more fine-grained control over your logs by combining bind () and filter:

logger.add("special.log", filter=lambda record: "special" in record["extra"])
logger.debug ("This message is not logged to the file")
logger.bind (special=True) .info ("This message, though, is logged to the file!")

6 Chapter 1. Overview

https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.bind
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.contextualize
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.bind

loguru Documentation

Finally, the patch () method allows dynamic values to be attached to the record dict of each new message:

logger.add(sys.stderr, format="/{extralutc]} {message}")
logger = logger.patch(lambda record: record["extra"].update (utc=datetime.utcnow()))

1.3.10 Lazy evaluation of expensive functions

Sometime you would like to log verbose information without performance penalty in production, you can use the
opt () method to achieve this.

logger.opt (lazy=True) .debug ("If sink level <= DEBUG: {x}", x=lambda: expensive_
—function (2+%64))

By the way, "opt()" serves many usages

logger.opt (exception=True) .info ("Error stacktrace added to the log message (tuple,
—accepted too)")

logger.opt (colors=True) .info ("Per message <blue>colors</blue>")

logger.opt (record=True) .info ("Display values from the record (eg. {record[thread]})")
logger.opt (raw=True) .info ("Bypass sink formatting\n")

logger.opt (depth=1) .info ("Use parent stack context (useful within wrapped functions)")
logger.opt (capture=False) .info ("Keyword arguments not added to {dest/) dict", dest=
—"extram)

1.3.11 Customizable levels

Loguru comes with all standard logging levels to which trace () and success () are added. Do you need more?
Then, just create it by using the 1evel () function.

new_level = logger.level ("SNAKY", no=38, color="<yellow>", icon="")

logger.log ("SNAKY", "Here we go!")

1.3.12 Better datetime handling

The standard logging is bloated with arguments like datefmt or msecs, % (asctime)s and % (created) s,
naive datetimes without timezone information, not intuitive formatting, etc. Loguru fixes it:

logger.add("file.log", format="{time:YYYY-MM-DD at HH:mm:ss} | {level} {message}")

1.3.13 Suitable for scripts and libraries

Using the logger in your scripts is easy, and you can configure () it at start. To use Loguru from inside a library,
remember to never call add () butuse disable () instead so logging functions become no-op. If a developer wishes
to see your library’s logs, he can enable () it again.

For scripts

config = {
"handlers": [
{"sink": sys.stdout, "format": "{time} - {message}"},
{"sink": "file.log", "serialize": True},

1,

(continues on next page)

1.3. Take the tour 7

https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.patch
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.opt
https://loguru.readthedocs.io/en/stable/api/logger.html#levels
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.trace
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.success
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.level
https://loguru.readthedocs.io/en/stable/api/logger.html#time
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.configure
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.add
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.disable
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.enable

loguru Documentation

(continued from previous page)

"extra": {"user": "someone"}

}

logger.configure (x*xconfiq)

For libraries

logger.disable ("my_library")

logger.info ("No matter added sinks, this message is not displayed")
logger.enable ("my_library")

logger.info ("This message however is propagated to the sinks")

1.3.14 Entirely compatible with standard logging

Wish to use built-in logging Handler as a Loguru sink?

handler = logging.handlers.SysLogHandler (address=('localhost', 514))
logger.add (handler)

Need to propagate Loguru messages to standard logging?

class PropagateHandler (logging.Handler) :
def emit (self, record):
logging.getLogger (record.name) .handle (record)

logger.add (PropagateHandler (), format="{message ")

Want to intercept standard logging messages toward your Loguru sinks?

class InterceptHandler (logging.Handler) :
def emit (self, record):
Get corresponding Loguru level if it exists

try:

level = logger.level (record.levelname) .name
except ValueError:

level = record.levelno

Find caller from where originated the logged message

frame, depth = logging.currentframe(), 2

while frame.f_code.co_filename == logging. file :
frame = frame.f_back
depth += 1

logger.opt (depth=depth, exception=record.exc_info) .log(level, record.
—getMessage ())

logging.basicConfig (handlers=[InterceptHandler ()], level=0)

8 Chapter 1. Overview

loguru Documentation

1.3.15 Personalizable defaults through environment variables

Don’t like the default logger formatting? Would prefer another DERUG color? No problem:

Linux / 0SX
export LOGURU_FORMAT="/{time} | <lvl>{message}</lvl>"

Windows
setx LOGURU_DEBUG_COLOR "<green>"

1.3.16 Convenient parser

It is often useful to extract specific information from generated logs, this is why Loguru provides a parse () method
which helps to deal with logs and regexes.

pattern = r" (?P<time>.x) - (?P<level>[0-9]+) - (?P<message>.x)" # Regex with named,
—groups

caster_dict = dict (time=dateutil.parser.parse, level=int) # Transform matching,
—groups

for groups in logger.parse("file.log", pattern, cast=caster_dict):

print ("Parsed:", groups)

{"level": 30, "message": "Log example", "time": datetime (2018, 12, 09, 11, 23
—55) }

7

1.3.17 Exhaustive notifier

Loguru can easily be combined with the great not i fiers library (must be installed separately) to receive an e-mail
when your program fail unexpectedly or to send many other kind of notifications.

import notifiers

params = {
"username": "you€@gmail.com",
"password": "abcl23",
"to": "dest@gmail.com"

Send a single notification
notifier = notifiers.get_notifier("gmail")
notifier.notify (message="The application is running!", *xparams)

Be alerted on each error message
from notifiers.logging import NotificationHandler

handler = NotificationHandler ("gmail", defaults=params)
logger.add (handler, level="ERROR")

1.3. Take the tour 9

https://loguru.readthedocs.io/en/stable/api/logger.html#env
https://loguru.readthedocs.io/en/stable/api/logger.html#loguru._logger.Logger.parse
https://github.com/notifiers/notifiers

loguru Documentation

1.3.18 10x faster than built-in logging

Although logging impact on performances is in most cases negligible, a zero-cost logger would allow to use it any-
where without much concern. In an upcoming release, Loguru’s critical functions will be implemented in C for

maximum speed.

10 Chapter 1. Overview

CHAPTER
TWO

API REFERENCE

The Loguru library provides a pre-instanced logger to facilitate dealing with logging in Python.

Just from loguru import logger.

2.1 loguru.logger

class Logger
An object to dispatch logging messages to configured handlers.

The Logger is the core object of Loguru, every logging configuration and usage pass through a call to one of
its methods. There is only one logger, so there is no need to retrieve one before usage.

Once the 1logger is imported, it can be used to write messages about events happening in your code. By
reading the output logs of your application, you gain a better understanding of the flow of your program and you
more easily track and debug unexpected behaviors.

Handlers to which the logger sends log messages are added using the add () method. Note that you can use the
Logger right after import as it comes pre-configured (logs are emitted to sy s . st derr by default). Messages
can be logged with different severity levels and using braces attributes like the st r. format () method do.

When a message is logged, a “record” is associated with it. This record is a dict which contains information
about the logging context: time, function, file, line, thread, level... It also contains the ___name___ of the
module, this is why you don’t need named loggers.

You should not instantiate a Logger by yourself, use from loguru import logger instead.

add (sink, *, level='"DEBUG’, format='<green>{time:YYYY-MM-DD HH:mm:ss.SSS}</green> |
<level>{level: <8}</level> | <cyan>{namej}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan>
- <level>{message}</level>', filter=None, colorize=None, serialize=False, backtrace=True, diag-

nose=True, enqueue="False, catch=True, **kwargs)
Add a handler sending log messages to a sink adequately configured.

Parameters

e sink (file-like object, str, pathlib.Path, callable, coroutine
function or logging.Handler) — An object in charge of receiving formatted log-
ging messages and propagating them to an appropriate endpoint.

* level (int or str, optional) — The minimum severity level from which logged mes-
sages should be sent to the sink.

* format (str or callable, optional) — The template used to format logged messages
before being sent to the sink.

e filter (callable, str or dict, optional) — A directive optionally used to decide
for each logged message whether it should be sent to the sink or not.

11

https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/glossary.html#term-coroutine-function
https://docs.python.org/3/glossary.html#term-coroutine-function
https://docs.python.org/3/library/logging.html#logging.Handler
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

loguru Documentation

* colorize (bool, optional) — Whether the color markups contained in the formatted
message should be converted to ansi codes for terminal coloration, or stripped otherwise.
If None, the choice is automatically made based on the sink being a tty or not.

* serialize (bool, optional) — Whether the logged message and its records should be
first converted to a JSON string before being sent to the sink.

* backtrace (bool, optional) — Whether the exception trace formatted should be ex-
tended upward, beyond the catching point, to show the full stacktrace which generated the
error.

* diagnose (bool, optional) — Whether the exception trace should display the variables
values to eases the debugging. This should be set to False in production to avoid leaking
sensitive data.

* enqueue (bool, optional) — Whether the messages to be logged should first pass through
a multiprocess-safe queue before reaching the sink. This is useful while logging to a file
through multiple processes. This also has the advantage of making logging calls non-
blocking.

* catch (bool, optional) — Whether errors occurring while sink handles logs messages
should be automatically caught. If True, an exception message is displayed on sys.
stderr but the exception is not propagated to the caller, preventing your app to crash.

* xxkwargs — Additional parameters that are only valid to configure a coroutine or file
sink (see below).

If and only if the sink is a coroutine function, the following parameter applies:

Parameters loop (AbstractEventLoop, optional) — The event loop in which the asyn-
chronous logging task will be scheduled and executed. If None, the loop returned by
asyncio.get_event_loop () is used.

If and only if the sink is a file path, the following parameters apply:
Parameters

e rotation (str, int, datetime.time, datetime.timedelta or callable,
optional) — A condition indicating whenever the current logged file should be closed and
a new one started.

* retention (str, int,datetime.timedelta or callable, optional) — A direc-
tive filtering old files that should be removed during rotation or end of program.

* compression (str or callable, optional) — A compression or archive format to
which log files should be converted at closure.

* delay (bool, optional) — Whether the file should be created as soon as the sink is con-
figured, or delayed until first logged message. It defaults to False.

* mode (st r, optional) — The opening mode as for built-in open () function. It defaults to
"a" (open the file in appending mode).

* buffering (int, optional) — The buffering policy as for built-in open () function. It
defaults to 1 (line buffered file).

* encoding (str, optional) — The file encoding as for built-in open () function. If None,
it defaults to 1ocale.getpreferredencoding ().

* xxkwargs — Others parameters are passed to the built-in open () function.

Returns int — An identifier associated with the added sink and which should be used to
remove () it.

12 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/locale.html#locale.getpreferredencoding
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#int

loguru Documentation

Notes

Extended summary follows.

The sink parameter

The sink handles incoming log messages and proceed to their writing somewhere and somehow. A sink
can take many forms:

e A file-like object like sys.stderr or open ("somefile.log", "w"). Anything
with a .write () method is considered as a file-like object. Custom handlers may also im-
plement flush () (called after each logged message), stop () (called at sink termination) and
complete () (awaited by the eponymous method).

* Afile pathas str or pathlib.Path. It can be parametrized with some additional parameters, see
below.

* A callable (such as a simple function) like lambda msg: print (msg). This allows for
logging procedure entirely defined by user preferences and needs.

* A asynchronous coroutine function defined with the async def statement. The coroutine
object returned by such function will be added to the event loop using loop.create_task ().
The tasks should be awaited before ending the loop by using complete ().

* A built-in logging.Handler like logging.StreamHandler. In such a case, the Loguru
records are automatically converted to the structure expected by the 10gging module.

Note that you should avoid using the 1ogger inside any of your sinks as this would result in infinite
recursion or dead lock if the module’s sink was not explicitly disabled.

The logged message

The logged message passed to all added sinks is nothing more than a string of the formatted log, to which a
special attribute is associated: the . record which is a dict containing all contextual information possibly
needed (see below).

Logged messages are formatted according to the format of the added sink. This format is usually a string
containing braces fields to display attributes from the record dict.

If fine-grained control is needed, the format can also be a function which takes the record as parameter
and return the format template string. However, note that in such a case, you should take care of appending
the line ending and exception field to the returned format, while "\n{exception}" is automatically
appended for convenience if format is a string.

The £ilter attribute can be used to control which messages are effectively passed to the sink and which
one are ignored. A function can be used, accepting the record as an argument, and returning True if the
message should be logged, False otherwise. If a string is used, only the records with the same name and
its children will be allowed. One can also pass a dict mapping module names to minimum required level.
In such case, each log record will search for it’s closest parent in the dict and use the associated level
as the filter. The dict values can be int severity, st r level name or True and False to respectively
authorize and discard all module logs unconditionally. In order to set a default level, the " " module name
should be used as it is the parent of all modules (it does not suppress global 1evel threshold, though).

Note that while calling a logging method, the keyword arguments (if any) are automatically added to the
extra dict for convenient contextualization (in addition to being used for formatting).

2.1. loguru.logger 13

https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/glossary.html#term-coroutine-function
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_task
https://docs.python.org/3/library/logging.html#logging.Handler
https://docs.python.org/3/library/logging.html#module-logging

loguru Documentation

The severity levels

Each logged message is associated with a severity level. These levels make it possible to prioritize mes-
sages and to choose the verbosity of the logs according to usages. For example, it allows to display some
debugging information to a developer, while hiding it to the end user running the application.

The 1evel attribute of every added sink controls the minimum threshold from which log messages are al-
lowed to be emitted. While using the 1ogger, you are in charge of configuring the appropriate granularity
of your logs. It is possible to add even more custom levels by using the Zevel () method.

Here are the standard levels with their default severity value, each one is associated with a logging method
of the same name:

Level name | Severity value | Logger method

TRACE 5 logger.trace ()
DEBUG 10 logger.debug ()
INFO 20 logger.info ()
SUCCESS 25 logger.success ()
WARNING 30 logger.warning ()
ERROR 40 logger.error ()
CRITICAL | 50 logger.critical ()

The record dict

The record is just a Python dict, accessible from sinks by message . record. It contains all contextual
information of the logging call (time, function, file, line, level, etc.).

Each of its key can be used in the handler’s format so the corresponding value is properly displayed
in the logged message (e.g. "{level}" -> "INFO"). Some record’s values are objects with two or
more attributes, these can be formatted with " {key.attr}" (" {key}" would display one by default).
Formatting directives like " {key: >3} " also works and is particularly useful for time (see below).

Key Description Attributes

elapsed The time elapsed since the start of the program See datetime.timedelta
exception | The formatted exception if any, None otherwise type, value, traceback
extra The dict of attributes bound by the user (see bind ()) | None

file The file where the logging call was made name (default), path
function The function from which the logging call was made None

level The severity used to log the message name (default), no, icon
line The line number in the source code None

message | The logged message (not yet formatted) None

module The module where the logging call was made None

name The __name___ where the logging call was made None

process The process in which the logging call was made name, id (default)

thread The thread in which the logging call was made name, id (default)

time The aware local time when the logging call was made | See datetime.datetime

14 Chapter 2. API Reference

https://docs.python.org/3/library/string.html#format-string-syntax
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime

loguru Documentation

The time formatting

To use your favorite time representation, you can set it directly in the time formatter specifier of your han-
dler format, like for example format="{time:HH:mm:ss} {message}". Note that this datetime
represents your local time, and it is also made timezone-aware, so you can display the UTC offset to avoid
ambiguities.

The time field can be formatted using more human-friendly tokens. These constitute a subset of the one
used by the Pendulum library of @sdispater. To escape a token, just add square brackets around it, for
example " [YY] " would display literally "YY".

If you prefer to display UTC rather than local time, you can add " ! UTC" at the very end of the time format,
like {time:HH:mm:ss!UTC}. Doing so will convert the datet ime to UTC before formatting.

If no time formatter specifier is used, like for example if format="{time} {message}", the default
one will use ISO 8601.

Token Output
Year YYYY 2000, 2001, 2002 ... 2012, 2013
YY 00,01,02... 12,13
Quarter Q 1234
Month MMMM | January, February, March ...
MMM Jan, Feb, Mar ...
MM 01,02,03... 11,12
M 1,2,3... 11,12
Day of Year DDDD 001, 002, 003 ... 364, 365
DDD 1,2,3... 364, 365
Day of Month DD 01,02,03... 30,31
D 1,2,3... 30,31
Day of Week dddd Monday, Tuesday, Wednesday ...
ddd Mon, Tue, Wed ...
d 0,1,2... 6
Days of ISO Week E 1,2,3...7
Hour HH 00,01,02... 23,24
H 0,1,2...23,24
hh 01,02,03... 11,12
h 1,2,3... 11,12
Minute mm 00,01,02... 58,59
m 0,1,2... 58,59
Second ss 00,01,02... 58,59
S 0,1,2... 58,59
Fractional Second S 01...89
SS 00,01,02... 98,99
SSS 000 001 ... 998 999
SSSS... | 000[0..] 001[0..] ... 998[0..] 999[0..]
SSSSSS | 000000 000001 ... 999998 999999
AM /PM A AM, PM
Timezone Z -07:00, -06:00 ... +06:00, +07:00
77 -0700, -0600 ... +0600, +0700
7z EST CST ... MST PST
Seconds timestamp X 1381685817, 1234567890.123
Microseconds timestamp | x 1234567890123

2.1. loguru.logger 15

https://pendulum.eustace.io/docs/#tokens
https://github.com/sdispater

loguru Documentation

The file sinks

Ifthesinkisa str orapathlib.Path, the corresponding file will be opened for writing logs. The path
can also contain a special " {t ime} " fiel